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Abstract

In a recent paper we examined the loss of ellipticity and its interpretation in terms of fiber kinking and other in-

stability phenomena in respect of a fiber-reinforced incompressible elastic material. Here we provide a corresponding

analysis for fiber-reinforced compressible elastic materials. The analysis concerns a material model which consists of an

isotropic base material augmented by a reinforcement dependent on the fiber direction. The assessment of loss of el-

lipticity can be cast in terms of the eigenvalues of the acoustic tensors associated with the isotropic and anisotropic parts

of the strain-energy function. For the anisotropic part, two different reinforcing models are examined and it is shown

that, depending on the choice of model and whether the fiber is under compression or extension, loss of ellipticity may

be associated with, in particular, a weak surface of discontinuity normal to or parallel to the deformed fiber direction or

at an intermediate angle. Under compression the associated failure interpretations include fiber kinking and fiber

splitting, while under extension fiber de-bonding and matrix failure are included.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we continue the study, initiated by Merodio and Ogden (2002), concerned with the analysis

of failure mechanisms in transversely isotropic elastic solids. These failure mechanisms include fiber kinking

(Budiansky and Fleck, 1993; Kyriakides et al., 1995; Vogler and Kyriakides, 1997; Jensen and Christof-

fersen, 1997; Budiansky et al., 1998; Moran and Shih, 1998; Merodio and Pence, 2001a,b), fiber splitting

(Lee et al., 2000), fiber de-bonding (Piggott, 1997) and matrix failure (Okabe et al., 1999; Liao and
* Corresponding author. Tel.: +44-1413-304-550; fax: +44-1413-304-111.

E-mail addresses: merodioj@unican.es (J. Merodio), rwo@maths.gla.ac.uk (R.W. Ogden).

0020-7683/03/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00309-3

mail to: merodioj@unican.es


4708 J. Merodio, R.W. Ogden / International Journal of Solids and Structures 40 (2003) 4707–4727
Reifsnider, 2000). For a review of compressive failure mechanisms we refer to Fleck (1997), and for some

recent experimental results and analysis of kink band propagation to Hsu et al. (1999) and Vogler and

Kyriakides (1999). Our purpose here is to investigate further the reinforcement model presented by Merodio

and Ogden (2002) with a view to interpreting the above-mentioned failure mechanisms in terms of loss of
ellipticity of the governing partial differential equations (equivalently of the material model). A unified

approach to the prediction of fiber instability or fiber failure in fiber-reinforced composite materials on the

basis of loss of ellipticity has been provided recently by Merodio and Ogden (2002) in respect of incom-

pressible elastic materials. In this paper we present a corresponding analysis for compressible elastic ma-

terials.

For a given strain-energy function the equation that defines the loss of ellipticity determines both the

deformation associated with the existence of surfaces of weak or strong discontinuity and the direction of

the normal to that surface. Surfaces of weak discontinuity (or weak surfaces) are surfaces across which the
second derivative of the deformation field is discontinuous. A strong (or fully developed) surface of dis-

continuity, on the other hand, is one across which the first derivative (i.e. the deformation gradient) suffers a

finite jump. In each case the emergence of such a surface is associated with the loss of ellipticity, and loss of

ellipticity therefore heralds either a weak or strong discontinuity (or both). A strong surface is also nec-

essarily a weak surface, and in our discussion we therefore refer for the most part to weak surfaces, it being

understood that in some cases such a surface may also be strong.

In Merodio and Ogden (2002) we related the angle between the weak surface normal and the fiber-

reinforcement direction to a particular failure mechanism. For example, the onset of fiber kinking under
fiber compression was associated with a weak surface that lies close to the normal to the direction of fiber

reinforcement (Budiansky and Fleck, 1993). For a weak surface whose normal lies close to the direction of

fiber reinforcement, on the other hand, the failure mechanism may be interpreted as fiber de-bonding

(Piggott, 1997). For fiber kinking combined with fiber splitting, the combination of weak surfaces close to

and normal to the fiber direction is required (Lee et al., 2000). Matrix failure arises under fiber extension

and is associated with weak surfaces whose normal is parallel to the fiber reinforcement (Okabe et al., 1999;

Liao and Reifsnider, 2000). For further discussion we refer to Merodio and Ogden (2002).

Constitutive equations that suffer a loss of ellipticity have been studied in a variety of contexts (see, e.g.,
Knowles and Sternberg, 1975, 1978; Abeyaratne, 1980; Triantafyllidis and Abeyaratne, 1983; Zee and

Sternberg, 1983; Rosakis, 1990; Horgan, 1996; Jensen and Christoffersen, 1997; Qiu and Pence, 1997;

Merodio and Pence, 2001a,b). In particular, the loss of ellipticity of some particular transversely isotropic

non-linearly elastic materials under plane deformations has been examined by Triantafyllidis and Abey-

aratne (1983), Qiu and Pence (1997) and Merodio and Pence (2001a,b). In each of these latter works a

constitutive model consisting of an isotropic base material augmented by a uniaxial reinforcement was

used, the direction of reinforcement being referred to as the fiber direction. The fiber reinforcement is taken

to lie in the considered plane of deformation in each case. Here, we adopt the same structure for the
material model and define the strain energy as an isotropic base material augmented by a reinforcing model.

For the latter, two general classes of functions are examined. We mention here that some related aspects of

strong ellipticity in three-dimensions for transversely isotropic elastic solids have also been studied recently

(Wilber and Walton, 2002; Walton and Wilber, 2003).

In three dimensions, two independent deformation invariants, denoted I4 and I5, are sufficient to

characterize the anisotropic nature of a transversely isotropic material. These are additional to the usual

three invariants I1, I2, I3 of the Cauchy–Green deformation tensors required for isotropy in a compressible

material. The notation is defined in Section 2.1. Under plane deformations only two of I1, I2, I3 are in-
dependent and, if the fiber direction is taken to be in the considered plane, I4 and I5 are no longer inde-

pendent but are connected through I1 and I3. The (in-plane) material response may then be regarded as

depending only on I1, I2 and I4 or, equivalently, on I1, I3 and I4. The ellipticity status of a strain-energy

function under the restriction to the plane in question then depends on only one anisotropic invariant. In
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the reinforcement model we shall consider separately dependence on I4 and on an invariant that couples I4
with I1 since each model adds a distinct anisotropic character to the isotropic base material.

In Section 2, the material model is introduced and the ellipticity, strong ellipticity and loss of ellipticity

conditions for the governing differential equations are summarized. Specialization to plane strain is dis-
cussed in Section 3. In Section 3.1, the ellipticity status of a general reinforcing model depending on I4 is

established. It is shown that failure of ellipticity is to be expected in fiber compression, and the incipient loss

of ellipticity is interpreted in terms of fiber kinking. Failure can also occur in fiber extension if the rein-

forcing model loses convexity, with the weak surface (close to) parallel to the fiber direction, in which case

fiber de-bonding is an appropriate interpretation of the associated failure mode. Convex reinforcing models

are discussed briefly. The general results are then discussed in more detail in respect of a simple model for

the isotropic base material (but without specializing the reinforcing model). This enables the discussion of

loss of ellipticity to be conducted in terms of the eigenvalues of the acoustic tensors associated with the
isotropic base material and the reinforcing model.

In Section 3.2, the analysis focuses on a reinforcing model for which I4 and I1 are coupled. Under fiber

contraction it is found that failure of ellipticity may occur in two different modes, which may be associated

with fiber kinking and fiber splitting. In fiber extension de-bonding is again a possible failure mode if the

reinforcing model is non-convex. A weak surface may also arise perpendicular to the fiber direction and this

is interpreted as matrix failure. Again we consider the specialization of the isotropic base material and

continue the discussion briefly in terms of the eigenvalues of the acoustic tensors.

The examples of failure modes discussed here are not exhaustive. Other possibilities associated with loss
of ellipticity may arise. For example, if the base material loses ellipticity then fiber de-bonding and matrix

failure are also possible failure modes under fiber extension whether or not the reinforcing model is convex.

Furthermore, other instabilities, not associated with loss of ellipticity, are possible, but are not considered

here. In Section 4 we summarize and discuss briefly the results obtained in the previous sections.
2. Basic equations

2.1. Kinematics

Let X, with Cartesian components Xa, a 2 f1; 2; 3g, denote the position vector of a material particle in

the stress-free reference configuration and x, with components xi, i 2 f1; 2; 3g, denote the corresponding

position vector in the deformed configuration. The deformation gradient tensor is denoted F and has

components oxi=oXa. The left and right Cauchy–Green deformation tensors, respectively B and C, are given

by
B ¼ FFT; C ¼ FTF ð1Þ
and the principal (isotropic) invariants of C (equivalently of B) are defined by
I1 ¼ trC; I2 ¼ I3 tr ðC�1Þ; I3 ¼ detC: ð2Þ

We consider a fiber-reinforcement defined in the undeformed configuration by the unit vector A, which

may depend on X. The combination of A and C introduces two additional invariants, denoted I4 and I5,
which are defined by
I4 ¼ A � ðCAÞ; I5 ¼ A � ðC2AÞ: ð3Þ

We use the notation a defined by
a ¼ FA: ð4Þ
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Then, from (4), (1) and (3) we have
I4 ¼ a � a; I5 ¼ a � ðBaÞ: ð5Þ

In terms of the principal stretches ðk1; k2; k3Þ of the deformation we have
I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ I3ðk�2

1 þ k�2
2 þ k�2

3 Þ; I3 ¼ k2
1k

2
2k

2
3; ð6Þ

I4 ¼ k2
1A

2
1 þ k2

2A
2
2 þ k2

3A
2
3 ¼ a21 þ a22 þ a23; ð7Þ

I5 ¼ k4
1A

2
1 þ k4

2A
2
2 þ k4

3A
2
3 ¼ k2

1a
2
1 þ k2

2a
2
2 þ k2

3a
2
3; ð8Þ
where ðA1;A2;A3Þ are the components of A referred to the principal axes of C and ða1; a2; a3Þ those of a

referred to the principal axes of B. It is clear from the above that I4 is the square of the stretch in the
direction A of the fiber reinforcement and therefore registers deformations that modify the length of the

fiber. There is no corresponding immediate simple interpretation of I5 in general. However, it is worth

noting that if A is taken to correspond to the x1 coordinate direction then I4 ¼ C11, while, in general,

I5 ¼ I24 þ C2
12 þ C2

13 and hence I5 also registers shearing deformations through the shear components C12 and

C13 except when A is an eigenvector of C (and C12 ¼ C13 ¼ 0).

As discussed by Merodio and Ogden (2002) a connection between I5 and the deformation of area ele-

ments may be established by use of the Cayley–Hamilton theorem for C. This gives
I5 ¼ I1I4 � I2 þ A � ðC
AÞ; ð9Þ

where C
 ¼ I3C

�1 is the adjugate of C. Since a reference surface area element of unit magnitude with

normal in the direction A transforms to
ffiffiffiffi
I3

p
F�TA (Nanson�s formula) the final term in (9) is interpreted as

the square of the ratio of deformed to undeformed surface area elements.

2.2. Strain energy and stress

For an elastic material without internal constraints the most general strain-energy function for a

homogeneous transversely isotropic non-linear elastic solid depends only on the invariants ðI1; I2; I3; I4; I5Þ.
For details we refer to the work of Spencer (1972). Accordingly, we write the strain energy per unit ref-

erence volume as
W ¼ W ðI1; I2; I3; I4; I5Þ: ð10Þ

The nominal stress tensor S is in general given by
S ¼ oW
oF

: ð11Þ
To make this explicit in respect of (10) we use the formulas
oI1
oF

¼ 2FT;
oI2
oF

¼ 2I1F
T � 2FTFFT;

oI3
oF

¼ 2I3F
�1; ð12Þ

oI4
oF

¼ 2A� FA;
oI5
oF

¼ 2ðA� FCAþ CA� FAÞ ð13Þ
to obtain
S ¼ 2W1F
T þ 2W2ðI1I� CÞFT þ 2I3W3F

�1 þ 2W4A� FAþ 2W5ðA� FCAþ CA� FAÞ; ð14Þ

where the subscripts 1; . . . ; 5 on W indicate differentiation with respect to I1; . . . ; I5, respectively, and I is the
identity tensor.
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The associated Cauchy stress tensor r is given by
Jr ¼ FS ¼ 2W1Bþ 2W2ðI1I� BÞBþ 2I3W3Iþ 2W4a� aþ 2W5ða� Baþ Ba� aÞ; ð15Þ
where J ¼ detF ¼ I1=23 .

The energy function and the stress must vanish in the reference configuration (where I1 ¼ I2 ¼ 3 and
I3 ¼ I4 ¼ I5 ¼ 1). Hence,
W ð3; 3; 1; 1; 1Þ ¼ 0; ð16Þ

W1ð3; 3; 1; 1; 1Þ þ 2W2ð3; 3; 1; 1; 1Þ þ W3ð3; 3; 1; 1; 1Þ ¼ 0; ð17Þ

W4ð3; 3; 1; 1; 1Þ þ 2W5ð3; 3; 1; 1; 1Þ ¼ 0: ð18Þ
Moreover, for consistency with the classical linear theory of transversely isotropic elasticity the conditions
W11 þ 4W12 þ 4W22 þ 2W13 þ 4W23 þ W33 ¼ c11=4; ð19Þ

W2 þ W3 ¼ ðc12 � c11Þ=4; W1 þ W2 þ W5 ¼ c44=2; ð20Þ

W14 þ 2W24 þ 2W15 þ W34 þ 4W25 þ 2W35 ¼ ðc13 � c12Þ=4; ð21Þ

W44 þ 4W45 þ 4W55 þ 2W5 ¼ ðc33 � c11 þ 2c12 � 2c13Þ=4 ð22Þ
must be satisfied, where the derivatives of W are evaluated in the reference configuration and the constants

c11; . . . ; c44 constitute the standard notation for the elastic constants used in classical transverse isotropy

with the x3 coordinate direction corresponding to the axis of symmetry (see, e.g., Love, 1944, p. 160).

2.3. Equilibrium and ellipticity

The equation of equilibrium in the absence of body forces has the form DivS ¼ 0 and may be written in

the component form
Aaibjxj;ab ¼ 0; ð23Þ

where
Aaibj ¼
o2W

oFiaoFjb
; ð24Þ
Greek and Roman indices being associated with the reference and deformed configurations respectively.

The subscripts following a comma indicate differentiation with respect to the relevant coordinate and the
usual summation convention for repeated indices is adopted.

Consider a body whose reference configuration is denoted byBr. Suppose that F is continuous in Br and

that GradF, with components xi;ab, is also continuous except that it may suffer a jump discontinuity across a

surface Sr in Br. Such a surface is referred to as a weak discontinuity. Let N denote a normal vector to Sr.

Then, the jump in xi;ab across Sr is given by
½xi;ab� ¼ miNaNb; ð25Þ

where ½�� denotes the difference in the enclosed quantity evaluated on the two sides of Sr and mi are the

components of an undetermined vector m.

By taking the difference of the left-hand side of (23) on the two sides of Sr and using (25) we obtain
AaibjmiNaNb ¼ 0: ð26Þ
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We now update (i.e. push forward) Aaibj to the deformed configuration to define A0piqj by
JA0piqj ¼ FpaFqbAaibj ð27Þ
(see, e.g., Ogden, 1984; Holzapfel, 2000). We also define the vector n by
N ¼ FTn; ð28Þ
so that, recalling Nanson�s formula nda ¼ JF�TNdA for the deformation of area elements, we see that n is

normal to the image of Sr in the deformed configuration. We point out that while in Nanson�s formula N
and n are unit normals the n defined by (28) is not in general a unit vector.

Next, we use (27) and (28) to write (26) in the form
QðnÞm ¼ 0; ð29Þ
where the acoustic tensor QðnÞ has components defined by
Qij ¼ A0piqjnpnq: ð30Þ
Thus, for the existence of a surface of weak discontinuity, QðnÞ must be singular for some non-zero n

and the associated value(s) of n is (are) given by
detQðnÞ ¼ 0: ð31Þ
Once n is determined from (31) m is found from (29). It follows that for a deformation with the considered
properties to be admissible the equality
A0piqjnpnqmimj � ½QðnÞm� �m ¼ 0 ð32Þ
must hold for some pair of non-zero vectors m and n. For a non-trivial solution this equation, together with

(29), defines a pair of non-zero vectors m and n, the former being a null eigenvector of QðnÞ for an n for

which QðnÞ is singular.
If the system of Eq. (23) is elliptic then no such solutions exist. The condition for ellipticity is that
½QðnÞm� �m � A0piqjnpnqmimj 6¼ 0 ð33Þ
for all vectors m 6¼ 0; n 6¼ 0. A stronger requirement is the strong-ellipticity condition
½QðnÞm� �m � A0piqjnpnqmimj > 0 m 6¼ 0; n 6¼ 0: ð34Þ
Hence, for strong ellipticity QðnÞ is positive definite for all vectors n 6¼ 0. Without loss of generality we

make take m and n to be unit vectors.

The analysis of Eq. (33) for specific forms of the energy function W furnishes the ellipticity status of that

particular strain energy. A deformation gradient F satisfying (33) for every pair of unit vectors m and n is
said to be an elliptic deformation for that W . If all possible deformations for a particular W are elliptic then

the material itself is referred as an elliptic material. As is well known, the incompressible isotropic neo-

Hookean material is an example of an elliptic material (see, e.g., Merodio and Ogden, 2002). On the other

hand, if, for some pair of unit vectors m and n, a deformation gradient F satisfies equation (32), then the

deformation is said to be non-elliptic for that material model. Furthermore, the vector n is identified as a

normal vector to a weak surface (in the deformed configuration) as defined by the discontinuity (25). If n is

taken to be a unit vector then, by (28), it follows that N is not in general a unit vector.

We emphasize here that a surface of strong discontinuity (across which F is discontinuous) is also defined
by the loss of ellipticity condition (32), and, since discontinuity of F implies that its derivatives are also

discontinuous, a strong surface is also a weak surface.
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2.4. The reinforcing model

We consider an isotropic elastic material with strain energy denoted by WisoðI1; I2; I3Þ. This strain energy

is then augmented to give a strain-energy function
W ¼ W ðI1; I2; I3; I4; I5Þ ¼ WisoðI1; I2; I3Þ þ WfibðI4; I5Þ; ð35Þ
where the additional term WfibðI4; I5Þ represents the contribution due to the fiber reinforcement. The first

term in (35) represents the isotropic base material, while the second term is the so-called reinforcing model,

the subscript standing for �fiber� reinforcement. This strain energy must be consistent with the conditions

(16)–(22).
Henceforth, we restrict Wfib to functions that depend only on one invariant. First, we consider I4 rein-

forcement and it will be convenient to write WfibðI4; I5Þ ¼ F ðI4Þ.
In the literature (see Triantafyllidis and Abeyaratne, 1983; Qiu and Pence, 1997) use has been made of

the so-called standard reinforcing model defined by the function
F ðI4Þ ¼ 1
2
aðI4 � 1Þ2; ð36Þ
where a > 0 is an anisotropy parameter measuring the degree of anisotropy or strength of reinforcement.

(Note that a factor 1=2 has been inserted in (36) compared with the definition used by Merodio and Ogden

(2002).) The standard reinforcing model penalizes deformation in the fiber direction and is a convex

function of I4. In Triantafyllidis and Abeyaratne (1983) and Qiu and Pence (1997), for a sufficiently large,

loss of ellipticity was found in fiber compression, i.e. for I4 < 1. On the other hand, the considered materials
were found to gain stability in fiber extension. These results were generalized in the paper by Merodio and

Ogden (2002), which provided necessary and sufficient conditions for the ellipticity status of a general F ðI4Þ.
As discussed by Merodio and Ogden (2002) we note that the contribution of the term W4 to the Cauchy

stress (15) gives a traction component 2I4W4 in the deformed fiber direction. Thus, for the reinforcing model

F ðI4Þ this contribution is positive (negative) in fiber extension (contraction) provided
F 0ðI4Þ > 0 ð< 0Þ for I4 > 1 ð< 1Þ; F 0ð1Þ ¼ 0: ð37Þ
It may also be appropriate to take
F 0ðI4Þ ! �1ð1Þ as I4 ! 0ð1Þ; ð38Þ
although we note that the standard model (36) does not satisfy the lower of these limits.

In Merodio and Ogden (2002) a reinforcing model of the form WfibðI4; I5Þ ¼ GðI5Þ was also considered.

The analogue of (37) is
G0ðI5Þ > 0 ð< 0Þ for I5 > 1 ð< 1Þ; G0ð1Þ ¼ 0 ð39Þ
and of (38)
G0ðI5Þ ! �1ð1Þ as I5 ! 0ð1Þ: ð40Þ
Note, however, that I5 > 1 does not in general correspond to fiber extension, although I4 > 1 implies I5 > 1

and I5 < 1 implies I4 < 1, as in the incompressible situation (Merodio and Ogden, 2002). In what follows we
shall adopt the inequalities (37)–(40), although it will be convenient in Section 3.2 to use a slightly different

invariant in place of I5.
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3. The plane strain problem

Henceforth, as in the incompressible problem (Merodio and Ogden, 2002), we restrict attention to plane

strain deformations and examine the ellipticity of the material model introduced above, with the fiber-
reinforcement lying in the considered plane. We aim to derive conditions on the reinforcing model that

provide a qualitative understanding of the ellipticity status of the energy function (35).

Let the considered plane correspond to the ðX1;X2Þ coordinate plane so that the deformation satisfies

x3 ¼ X3 with ðx1; x2Þ independent of X3. Then, F13 ¼ F23 ¼ F31 ¼ F32 ¼ 0 and F33 ¼ 1, and the components of

C satisfy C13 ¼ C23 ¼ 0 and C33 ¼ 1. The out-of-plane principal stretch is now k3 ¼ 1 and the invariants (6)

reduce to
I1 ¼ k2
1 þ k2

2 þ 1; I2 ¼ k2
1 þ k2

2 þ k2
1k

2
2; I3 ¼ k2

1k
2
2: ð41Þ
The fiber direction A lies in the ðX1;X2Þ plane, and therefore, from (7) and (8),
I4 ¼ k2
1A

2
1 þ k2

2A
2
2; I5 ¼ k4

1A
2
1 þ k4

2A
2
2: ð42Þ
It then follows that
I2 ¼ I1 þ I3 � 1; I5 ¼ ðI1 � 1ÞI4 � I3; ð43Þ

while the specialization of (9) leads to
A � ðC
AÞ ¼ I1 � I4 � 1: ð44Þ

Thus, the strain-energy function W ðI1; I2; I3; I4; I5Þ of a fiber-reinforced elastic material (i.e. a transversely

isotropic elastic material), when restricted to plane strain, can be represented in terms of three independent

invariants, and we write
bWW ðI1; I3; I4Þ ¼ W ðI1; I1 þ I3 � 1; I3; I4; ðI1 � 1ÞI4 � I3Þ: ð45Þ

We now adjust the notation so that F denotes the in-plane restriction of the deformation gradient and A

is the corresponding in-plane fiber direction. Then, on specializing (12)1 and (13)1, we obtain
oI1
oF

¼ 2FT;
oI3
oF

¼ 2I3F
�1;

oI4
oF

¼ 2A� FA: ð46Þ
The corresponding plane restriction of the nominal stress tensor is then given by
S ¼ 2 bWW1F
T þ 2I3 bWW3F

�1 þ 2ŴW4A� a; ð47Þ

where a ¼ FA. Note that the only non-zero out-of-plane component of nominal stress (namely, S33) re-
quired to maintain plane strain has to be calculated from (14) and is not given by (47). The corresponding

(in-plane) Cauchy stress r is given by
Jr ¼ 2 bWW1Bþ 2 bWW3Iþ 2 bWW4a� a ð48Þ

specializing (15).

Restrictions on bWW in the reference configuration analogous to those given for W in (16) and (17) are
bWW ð3; 1; 1Þ ¼ 0; bWW1ð3; 1; 1Þ þ bWW3ð3; 1; 1Þ ¼ 0; bWW4ð3; 1; 1Þ ¼ 0; ð49Þ

while the appropriate specializations of (19)–(22) are
bWW11 þ 2 bWW13 þ bWW33 ¼ c11=4; 2 bWW14 þ 2 bWW34 þ bWW44 ¼ ðc33 � c11Þ=4;bWW44 � 2 bWW3 ¼ ðc11 þ c33 � 2c13Þ=4; bWW1 ¼ c44=2;
ð50Þ
all the derivatives of bWW being evaluated at ð3; 1; 1Þ. Note that these do not involve c12.
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For the bWW defined above the components A0piqj are explicitly
JA0piqj ¼ 4 bWW11BpiBqj þ 4I3 bWW13ðBpidqj þ BqjdpiÞ þ 4I23 bWW33dpidqj þ 4I3 bWW34ðdpiaqaj þ dqjapaiÞ

þ 4 bWW14ðBpiaqaj þ BqjapaiÞ þ 4 bWW44apaiaqaj þ 2 bWW1dijBpq þ 2I3 bWW3ð2dpidqj � dpjdqiÞ

þ 2 bWW4dijapaq; ð51Þ
wherein dij denotes the Kronecker delta. In (51) and henceforth indices take the values 1 and 2 only.

In terms of components of n referred to the principal axes of B the components of Q are written
Qij ¼ 4 bWW11k
2
i k

2
j ninj þ 4I3 bWW13ðk2

i þ k2
j Þninj þ 4I23 bWW33ninj þ 4I3 bWW34ðn � aÞðniaj þ njaiÞ þ 4 bWW14ðn � aÞ

� ðk2
i niaj þ k2

j njaiÞ þ 4 bWW44ðn � aÞ2aiaj þ 2 bWW1dijðk2
1n

2
1 þ k2

2n
2
2Þ þ 2I3 bWW3ninj þ 2 bWW4dijðn � aÞ2 ð52Þ
and the strong ellipticity condition (34), specialized to two dimensions, then becomes
2 bWW11½m � ðBnÞ�2 þ 4I3 bWW13½m � ðBnÞ�ðm � nÞ þ 2I23 bWW33ðm � nÞ2 þ ½4I3 bWW34ðm � nÞ
þ 4 bWW14½m � ðBnÞ� þ 2 bWW44ðm � aÞðn � aÞ�ðm � aÞðn � aÞ þ bWW1n � ðBnÞ þ I3 bWW3ðm � nÞ2 þ bWW4ðn � aÞ2 > 0

ð53Þ
for all (in-plane) unit vectors m and n, with a ¼ FA also being an in-plane vector.

When (53) is evaluated in the reference configuration and the notation (50) used it is easy to show that
necessary and sufficient conditions for (53) to hold are
c11 > 0; c33 > 0; c44 > 0 ð54Þ
together with
j c13 þ c44 j<
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33

p þ c44: ð55Þ
To extend the above to three-dimensional strong ellipticity the additional inequality c11 > c12 is required

(see, e.g., Payton, 1983). A simple proof of the above necessary and sufficient conditions is given by

Merodio and Ogden (in press).

For the special case of an isotropic material the inequality (53) reduces to
2 bWW11½m � ðBnÞ�2 þ 4I3 bWW13½m � ðBnÞ�ðm � nÞ þ 2I23 bWW33ðm � nÞ2 þ bWW1n � ðBnÞ þ I3 bWW3ðm � nÞ2 > 0; ð56Þ

with bWW now independent of I4. Necessary and sufficient conditions for (56) to hold for all non-zero m and n

are well known (see, e.g., Knowles and Sternberg, 1977; Hill, 1979; Dowaikh and Ogden, 1991; Ogden and
Sotiropoulos, 1998). They can be expressed in several different but equivalent forms, but are perhaps most

transparent in terms of the stretches, with the strain energy written as a symmetric function �WW ðk1; k2; k3Þ of
the principal stretches. Then, if �WWi and �WWij, with i; j 2 f1; 2g, denote, respectively, the first and second

derivatives of �WW with respect to the stretches, necessary and sufficient conditions for (56) are
�WW11 > 0; �WW22 > 0;
k1

�WW1 � k2
�WW2

k2
1 � k2

2

> 0; ð57Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�WW11

�WW22

q
� �WW12 þ

�WW1 þ �WW2

k1 þ k2

> 0; ð58Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�WW11

�WW22

q
þ �WW12 �

�WW1 � �WW2

k1 � k2

> 0; ð59Þ
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the latter two being given in this form by Dowaikh and Ogden (1991). Note that these do not require that

k3 ¼ 1 (which has been assumed here).

Since we may obtain, for example,
k2
1
�WW11 ¼ 4k4

1
bWW11 þ 8k2

1I3 bWW13 þ 4I23 bWW33 þ 2k2
1
bWW1 þ 2I3 bWW3 ð60Þ
and similar expressions for �WW22 and �WW12, the inequalities (57)1;2, (58) and (59) are not expressible simply in

terms of bWW . Note, however, that the third inequality in (57) is simply bWW1 > 0.

It is worth noting in passing that sufficient conditions for (56) to hold are bWW1 > 0 together with
matrix
bWW11 I3 bWW13

I3 bWW13 I3=23 ðI1=23
bWW3Þ3

� �
is positive semi-definite: ð61Þ
Here we assume that the inequalities (57)–(59) hold. Thus, by continuity, strong ellipticity holds in some

neighbourhood of the reference configuration, and on any path of deformation from the reference con-

figuration strong ellipticity holds until a deformation is met at which strong ellipticity just fails. This

happens (if at all) when a point is reached at which strict inequality > 0 in (53) is replaced by P 0 with

equality holding for some non-zero m and n.
We note that the inequality (53) is equivalent to
Q11ðnÞ > 0; Q11ðnÞQ22ðnÞ � ½Q12ðnÞ�2 > 0 ð62Þ
jointly for all unit vectors n, where the components of QðnÞ are given by (52). In general, the second in-
equality in (62) is a quartic in ðn1; n2Þ and while necessary and sufficient conditions for a quartic to be

positive can be written down they are rather complicated and the results are not very useful from the

viewpoint of subsequent analysis. We therefore consider special forms of constitutive law in order to assess

the failure of ellipticity.

3.1. I4 reinforcement

With the restriction to plane strain we now consider the strain energy
bWW ðI1; I3; I4Þ ¼ WisoðI1; I3Þ þ WfibðI4Þ ð63Þ
in which an isotropic base material with strain energy WisoðI1; I3Þ is augmented by the reinforcing model

WfibðI4Þ. This is the plane strain specialization of (41) with I5 omitted. For this separable form of energy, in

which the dependence of bWW on ðI1; I3Þ and I4 is decoupled, the strong ellipticity condition (53) reduces to
2E11½m � ðBnÞ�2 þ 4I3E13½m � ðBnÞ�ðm � nÞ þ 2I23E33ðm � nÞ2 þ E1n � ðBnÞ þ I3E3ðm � nÞ2

þ ða � nÞ2½F 0 þ 2ða �mÞ2F 00� > 0; ð64Þ
where, for convenience, we have introduced the notations
EðI1; I3Þ ¼ WisoðI1; I3Þ; F ðI4Þ ¼ WfibðI4Þ ð65Þ
and a prime signifies differentiation with respect to I4.
We now consider the contribution of the anisotropic part separately, noting that in (64) only the latter

two terms depend on a ¼ FA and I4. We assume that the isotropic base material is strongly elliptic so that

the inequality (56) is satisfied for bWW ¼ E.

3.1.1. The influence of F ðI4Þ
From (64) it is clear that since n may be chosen so that a � n ¼ 0 the ellipticity status of the model (63)

depends on the sign of
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F 0ðI4Þ þ 2ða �mÞ2F 00ðI4Þ: ð66Þ

Since we may choose m so that a �m ¼ 0 it is clear that for (66) to be non-negative it is necessary that
F 0ðI4ÞP 0. If also F 00ðI4ÞP 0 then (66) is non-negative for all ðm1;m2Þ. If, on the other hand, F 00ðI4Þ < 0

then, recalling (5)1,
F 0ðI4Þ þ 2ða �mÞ2F 00ðI4ÞP F 0ðI4Þ þ 2I4F 00ðI4Þ:

It follows that (66) is non-negative for all m if and only if
F 0ðI4ÞP 0; F 0ðI4Þ þ 2I4F 00ðI4ÞP 0: ð67Þ

Thus, sufficient conditions for (64) are clearly (67) together with (56) for Wiso ¼ E.

The factor ðn � aÞ2 in (64) ensures that, in isolation from the isotropic base material, F ðI4Þ always loses
ellipticity since n may be chosen so that n � a ¼ 0. For all other n the contribution of F to (64) is strictly

positive if and only if
F 0ðI4Þ > 0; F 0ðI4Þ þ 2I4F 00ðI4Þ > 0: ð68Þ

Recalling (37) we see that the first of these inequalities fails in the reference configuration and in com-

pression (I4 < 1). The second holds in the reference configuration. For the standard reinforcing model (36)
we note that F 0ðI4Þ þ 2I4F 00ðI4Þ > 0 if and only if I4 > 1=3. Deformation gradients F for which I4 < 1=3 are

not of interest since ellipticity will be lost at a larger value of I4 < 1 on a path from I4 ¼ 1, as pointed out by

Merodio and Ogden (2002).

3.1.2. Overall ellipticity

We are now concerned with the influence of the reinforcing model F ðI4Þ on the overall ellipticity of the

energy function (63). Without loss of generality we may take F ð1Þ ¼ 0. Hence, recalling (37), the restrictions

on F in the reference configuration are
F ð1Þ ¼ 0; F 0ð1Þ ¼ 0; E11ð3; 1Þ þ 2E13ð3; 1Þ þ E33ð3; 1Þ þ F 00ð1Þ > 0; ð69Þ

the latter following from (54)2 with (50), c11 now dependent only on E ¼ Wiso. This is certainly satisfied if

F 00ð1ÞP 0, which, in fact, follows from (37). Note, however, that (55), when combined with (69)3, requires
2E1ð3; 1Þ þ F 00ð1Þ > ½E1ð3; 1Þ�2=ðE11ð3; 1Þ þ 2E13ð3; 1Þ þ E33ð3; 1ÞÞ: ð70Þ

Since we assume that strong ellipticity holds in the reference configuration it follows by continuity that it

also holds within some neighbourhood of the reference configuration in the space of deformation gradients

F. We denote this neighbourhood by E and refer to it as the effective elliptic region for bWW . The boundary of

E, denoted oE, is defined by the loss of strong ellipticity condition, i.e. by the set of deformation gradients

for which
2E11½m � ðBnÞ�2 þ 4I3E13½m � ðBnÞ�ðm � nÞ þ 2I23E33ðm � nÞ2 þ E1n � ðBnÞ þ I3E3ðm � nÞ2

þ ða � nÞ2½F 0 þ 2ða �mÞ2F 00�P 0; ð71Þ
for all unit vectors m and n, with equality holding for some pair of unit vectors ðm; nÞ, not necessarily
unique. Since the isotropic base material is assumed to be strongly elliptic it is clear that a necessary

condition for the breakdown of ellipticity of an elliptic isotropic non-linearly elastic solid augmented with

the reinforcing model F ðI4Þ is that, for F 2 E, either F 0ðI4Þ < 0 or F 0ðI4Þ þ 2I4F 00ðI4Þ < 0 before the

boundary oE is reached on any path of deformation from the reference configuration that crosses oE.
We emphasize that a weak surface cannot be parallel to the fiber-reinforcement axis since then we would

have n � a ¼ 0 and, because of the assumed strong ellipticity of the isotropic base material, the inequality
(64) holds. Since weak surfaces are the only possible carriers of discontinuity for the equilibrium equations
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(23), no surface of discontinuity, either weak or strong, can be aligned with the fiber direction. We recall

that, for the standard reinforcing model, this result was established by Merodio and Pence (2001a) with a

particular deformation on one side of the surface, namely a deformation for which the (reference) fiber

direction is a Lagrangian principal direction (i.e. an eigenvector of C). For an incompressible material the
counterpart of the result given here was obtained by Merodio and Ogden (2002).

Let us now write Q ¼ Qiso þQfib, where Qiso is the acoustic tensor associated with EðI1; I3Þ and Qfib that

with F ðI4Þ. Then, for the considered two-dimensional situation,
detQ ¼ detQiso þ Qiso
11Q

fib
22 þ Qiso

22Q
fib
11 � 2Qiso

12Q
fib
12 þ detQfib; ð72Þ
where, explicitly,
detQfib ¼ 4ðn � aÞ4F 0ðF 0 þ 2I4F 00Þ: ð73Þ

In view of the assumed strong ellipticity of E we have
detQiso � Qiso
11Q

iso
22 � Qiso2

12 > 0; Qiso
11 > 0; Qiso

22 > 0: ð74Þ

Suppose, next, that we write F ðI4Þ ¼ ~aaeFF ðI4Þ, where ~aað> 0Þ is a dimensionless anisotropy parameter

(compare the dimensional a in the standard reinforcing model). Then, Eq. (72) is expressed simply as a

quadratic in ~aa and we write this as
pð~aaÞ ¼ uþ v~aa þ w~aa2; ð75Þ

where
u ¼ detQiso; v ¼ Qiso
11
eQQfib

22 þ Qiso
22
eQQfib

11 � 2Qiso
12
eQQfib

12 ; w ¼ det eQQfib ð76Þ

and eQQfib ¼ Qfib=~aa.

Clearly, if n � a 6¼ 0 and detQfib < 0 then as the reinforcement strength is increased (i.e. as ~aa is increased

from zero) a value of ~aa will be reached for which (72) vanishes for some unit vector n, i.e. ellipticity is lost.
This will certainly happen if ~aa is sufficiently large but may not if the reinforcement is relatively weak.

To illustrate the possibilities we now consider separately the cases in which F 00ðI4ÞP 0 and F 00ðI4Þ < 0.

Case (a): F 00ðI4ÞP 0. In this case a necessary condition for failure of ellipticity is F 0ðI4Þ < 0, so that the

fibers are under compressive strain. The largest negative contribution of
ða � nÞ2½F 0 þ 2ða �mÞ2F 00� ð77Þ

to (64) is
I4F 0ðI4Þ ð78Þ

and it arises for n ¼ âa with m � a ¼ 0, where âa ¼ a= j a j. This negative value increases (in magnitude) as I4
decreases from unity and breakdown of ellipticity occurs when the negative value of I4F 0ðI4Þ balances the
positive value of the terms in E in (64) with n ¼ âa. For example, if âa is an eigenvector of B corresponding to
the stretch k1 then for m � n ¼ 0 the left-hand side of (71) reduces to I4F 0ðI4Þ þ k2

1E1ðI1; I3Þ. Since, by strong

ellipticity of the base material, E1ðI1; I3Þ > 0, this will vanish for some I4 < 1 even for reinforcements of

moderate strength. For very strong reinforcement it will vanish for I4 close to 1. For this pair of values of n

and m it is easy to show that ½QisoðnÞm� �m is an eigenvalue of QisoðnÞ and hence an extremum corres-

ponding to the most negative contribution of the F terms in (64). Since the weak surface is in this case

normal to the fiber direction we may regard fiber kinking as the relevant failure mechanism under com-

pressive strain in the fiber direction (I4 < 1). Of course, fiber kinking is a strong discontinuity and in this

case the weak surface is also a strong surface of discontinuity. However, in general, the extreme value of
½QisoðnÞm� �m may not be a minimum for the considered pair m and n and loss of ellipticity may therefore

occur at an earlier point of the deformation path for an n 6¼ âa. This is discussed further in Section 3.1.4.
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Case (b): F 00ðI4Þ < 0. If F 00ðI4Þ < 0 and F 0ðI4Þ þ 2I4F 00ðI4ÞP 0 then there can be no loss of ellipticity, but if

F 0ðI4Þ þ 2I4F 00ðI4Þ < 0 then the (negative) least value of (77) is
I4F 0 þ 2I24F
00 ð79Þ
whether F 0 > 0 or F 0 < 0, and it occurs for m ¼ n ¼ âa. In compression we necessarily have, by continuity,

F 00ðI4Þ > 0 for I4 close to 1 so that in compression loss of ellipticity is likely to occur first in the mode

discussed in (a) above. In fiber extension, on the other hand, since F 0ðI4Þ > 0 loss of ellipticity occurs first, if

at all, when F 0ðI4Þ þ 2I4F 00ðI4Þ has passed from positive to negative. This, of course, requires loss of con-

vexity of F .
Thus, for example, if we again suppose that a is an eigenvector of B then in fiber extension ellipticity can

fail when n � a is small since the negative contribution to (77) then balances the positive contribution due to
E provided the reinforcement is sufficiently strong. In this case the weak surface is close to parallel to the

fiber direction and the relevant failure mechanism can be interpreted as de-bonding. Since strong ellipticity

certainly holds when n � a ¼ 0 it might seem surprising that failure of ellipticity can occur for small n � a. To
illustrate why this can happen we consider the following example.

Let a be eigenvector of B, corresponding to the stretch k1 say, and take m ¼ âa. Then equality holds in

(71) when
ð2E11k
4
1 þ 4I3E13k

2
1 þ 2I23E33 þ I3E3 þ F 0 þ 2I4F 00Þn21 þ E1ðk2

1n
2
1 þ k2

2n
2
2Þ ¼ 0: ð80Þ
Again we write F ðI4Þ ¼ ~aaeFF ðI4Þ. Then, if ~aa is sufficiently large then, on use of n22 ¼ 1� n21, (80) may be

approximated as ðn � âaÞ2 � n21 � E1k
2
2=½�~aaðeFF 0 þ 2I4eFF 00Þ�, which is close to zero. Thus, in this case the weak

surface is close to parallel to the fiber direction.

It is interesting to recall that, as discussed by Merodio and Ogden (2002), the contribution of F ðI4Þ to the

component of nominal traction, s say, in the fiber direction is, from (47), 2I1=24 F 0ðI4Þ. Hence, ds=dI4 ¼
I�1=2
4 ½F 0ðI4Þ þ 2I4F 00ðI4Þ� and failure of ellipticity therefore occurs after s has passed through a maximum

during fiber extension.

We remark that, as discussed above, ellipticity cannot fail for an n satisfying n � a ¼ 0 if E is strongly
elliptic. However, we record here that if E is allowed to lose ellipticity then this can happen for such an n,

i.e. when the weak surface coincides with the fiber direction. This, of course, is independent of the pro-

perties of the reinforcing model F ðI4Þ.

3.1.3. Consequences of F 00ðI4ÞP 0

Here we examine briefly some implications of the convexity of F ðI4Þ, i.e. F 00ðI4ÞP 0. Once more we write

F ðI4Þ ¼ ~aaeFF ðI4Þ. Then loss of ellipticity requires fiber contraction since F 0ðI4ÞP 0 and F 00ðI4ÞP 0 in fiber

extension. Furthermore, the breakdown of ellipticity for the considered materials, i.e. models with a

strongly elliptic isotropic base material, satisfies a nesting property with respect to the parameter ~aa, as
discussed by Merodio and Ogden (2002) for incompressible materials. The corresponding result in the

present context is encapsulated in the following proposition.

Proposition. If F is on the ellipticity boundary oE for ~aa ¼ ~aa1 and ~aa2 > ~aa1 then F 62 E for ~aa ¼ ~aa2.

Proof. This follows from (64), which we now write as
ðQisomÞ �mþ ~aað eQQfibmÞ �m > 0: ð81Þ

By hypothesis ðQisomÞ �m > 0. Now suppose that the left-hand side of (81) vanishes for the deformation

gradient F when ~aa ¼ ~aa1 and for a specific n (and hence m) but is otherwise non-negative. It follows that for
this F and the associated m and n the left-hand side of (81) is negative for ~aa2 > ~aa1. Hence, F 62 E for
~aa ¼ ~aa2. h
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In Qiu and Pence (1997) this nesting property of F and its connection with loss of ellipticity was illus-

trated for the standard reinforcing model (36). For an incompressible material with a general reinforcing

model of the type considered here a corresponding Proposition was established by Merodio and Ogden

(2002).
The situation for a non-elliptic isotropic base material was also discussed by Merodio and Ogden (2002)

in respect of an incompressible material. There it was shown that if the fiber is under contraction then the

same nesting property applies as for an elliptic base material, while if the fiber is subject to extension with a

deformation gradient F, then if F 2 E or oE for ~aa1, then F 2 E is (strongly) elliptic for ~aa2 > ~aa1. Therefore,

deformation gradients giving rise to breakdown of ellipticity are nested with respect to ~aa in fiber con-

traction, while the elliptic regions are nested with respect to ~aa in fiber extension. These results apply also for

the compressible material considered here and we may conclude that an elliptic isotropic base material

augmented with a convex reinforcing model gains stability in fiber extension while it is weakened in fiber
contraction. Similarly, as ~aa increases, i.e. as the degree of anisotropy increases, the solid becomes more

stable in fiber extension, but less stable in fiber compression.

3.1.4. A specific material model

In order to highlight some of the features discussed above and to make the results more transparent we

now consider the strain-energy function defined by
W ðI1; I2; I3; I4; I5Þ ¼ bWW ðI1; I3; I4Þ ¼ lðI1 � 3Þ þ HðI3Þ þ F ðI4Þ; ð82Þ

where l is a positive material constant, HðI3Þ is a function satisfying
Hð1Þ ¼ 0; H 0ð1Þ ¼ �l; ð83Þ

so that the conditions (49) are met, and F ðI4Þ is subject to (37).

It is convenient to use the notation j ¼ H 00ð1Þ. Then, from (50), we obtain the specializations
c11 ¼ 4j; c33 ¼ 4ðj þ aÞ; c44 ¼ 2l; c13 ¼ 4ðj � lÞ; ð84Þ

where, as in (36), we have set a ¼ F 00ð1Þ. For strong ellipticity to hold in the reference configuration we

obtain, from (54),
l > 0; j > 0; j þ a > 0: ð85Þ

The inequality (55) then requires the additional restriction a > �lð2j � lÞ=j. In the present context,

however, we have set a > 0.

For the model (82) the components of Qiso are obtained from (52) as
Qiso ¼ ðd þ b1Þn21 þ b2n22 dn1n2
dn1n2 b1n21 þ ðd þ b2Þn22

� �
; ð86Þ
where we have introduced the notations
d ¼ 4I23H
00ðI3Þ þ 2I2H 0ðI3Þ; b1 ¼ 2lk2

1; b2 ¼ 2lk2
2: ð87Þ
Note that in the reference configuration we obtain d ¼ 4j � 2l, b1 ¼ b2 ¼ 2l so that d may be positive or

negative. In general, for strong ellipticity (positive definiteness of (86)) it is easy to deduce that necessary

and sufficient conditions are simply b1 > 0, b2 > 0, d þ b1 > 0, d þ b2 > 0.

From (52) the components of Qfib are read off as
Qfib ¼ 2ðn � aÞ2 F 0 þ 2a21F
00 2F 00a1a2

2F 00a1a2 F 0 þ 2a22F
00

� �
: ð88Þ
The eigenvalues of Qiso, denoted qiso1 and qiso2 , are easily found to be
qiso1 ¼ b1n21 þ b2n22; qiso2 ¼ d þ qiso1 ð89Þ
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and those of Qfib, denoted qfib1 and qfib2 , are
qfib1 ¼ 2ðn � aÞ2F 0; qfib2 ¼ 2ðn � aÞ2ðF 0 þ 2I4F 00Þ: ð90Þ

For any given n the eigenvectors m associated with these eigenvalues are such that
qiso1 : m � n ¼ 0; qiso2 : m ¼ n; ð91Þ

qfib1 : m � a ¼ 0; qfib2 : m ¼ âa; ð92Þ
and we recall that âa ¼ a= j a j and that a depends on the deformation through a ¼ FA.

For a given n the eigenvalues ðqiso1 ; qiso2 Þ and ðqfib1 ; qfib2 Þ are extreme values of ðQisomÞ �m and ðQfibmÞ �m
respectively and it is therefore appropriate to consider if the least (positive) eigenvalue of Qiso can be as-
sociated with the least (negative) eigenvalue of Qfib at the point of loss of ellipticity. Now, it is clear from

(91) and (92) that the combinations ðqiso1 ; qfib2 Þ and ðqiso2 ; qfib1 Þ are not admissible since they both entail

n � a ¼ 0, in which case strong ellipticity holds. We therefore consider the combinations ðqiso1 ; qfib1 Þ and

ðqiso2 ; qfib2 Þ.
Case (i): d > 0. In this case qiso1 < qiso2 and the least eigenvalue corresponds to m � n ¼ 0. We have
qiso1 þ qfib1 ¼ b1n21 þ b2n22 þ 2I4F 0: ð93Þ
This cannot vanish if I4 > 1 but it can vanish for I4 < 1 and the weak surface corresponding to loss of

ellipticity is normal to the fibers ðn ¼ âaÞ. For the standard reinforcing model this gives
1� I4 ¼
l
aI4

ðk2
1n

2
1 þ k2

2n
2
2Þ ð94Þ
and for strong reinforcement ðl=a � 1Þ this yields a value of I4 close to unity. As discussed earlier this is

associated with fiber kinking.

Next, we consider
qiso2 þ qfib2 ¼ d þ b1n21 þ b2n22 þ 2I4ðF 0 þ 2I4F 00Þ: ð95Þ
If I4 > 1 this cannot vanish for F 00 > 0 but it could (in principle) vanish if F 00 passes from positive to

negative as I4 increases from 1. If so then this again corresponds to a weak surface normal to the fibers, but

with m ¼ n ¼ âa. This mode of loss of ellipticity might be associated with matrix failure. Note, however, that

for the standard reinforcing model this possibility does not arise.

To be more specific we specialize the deformation to correspond to pure homogeneous strain with the

principal axes of B corresponding to the Cartesian coordinate axes. Further, for simplicity of illustration,

we take the deformation to be isochoric and write the stretches as k1 ¼ k, k2 ¼ k�1. Then d ¼ 4j � 2l. We

also take the fiber direction to coincide with the x1 axis, so that I4 ¼ k2, and F to correspond to the standard
reinforcing model (36). From (72) we calculate detQ and the resulting equation for this to vanish is written
½�aaðk2 � 1Þ þ 1�½3�aak4 � ð�aa � 1Þk2 þ d�k6n41 þ ðdk2 þ 1Þn42 þ ½3�aadk6 � ð�aa � 1Þdk4

þ 4�aak4 � 2ð�aa � 1Þk2 þ d�k2n21n
2
2 ¼ 0; ð96Þ
which involves two dimensionless material constants defined by �aa ¼ a=l; d ¼ d=2l. For the considered

material model there is no loss of ellipticity for I4 ¼ k2 > 1 so, in Fig. 1, we plot n21 against k2 < 1 for three

different values of the reinforcing parameter �aa and one fixed value of d (which is a measure of compressi-

bility).
The results indicate that under compression loss of ellipticity occurs first for n1 ¼ 1 and that the stronger

the reinforcement the closer to k ¼ 1 this happens. For the considered values of �aa and d there is only one



Fig. 1. Plot of the value of n21 against k2 in compression corresponding to loss of ellipticity for the model (96) with dimensionless

material parameters d ¼ 40 and �aa ¼ 5, 10, 20.
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solution of Eq. (96), and this corresponds to k2 ¼ ð�aa � 1Þ=�aa when n1 ¼ 1. A solution corresponding to

vanishing of the coefficient 3�aak4 � ð�aa � 1Þk2 þ d of n41 in (96) for n1 ¼ 1 requires a much smaller value of d.
Such solutions have the same character as the results shown in Fig. 1 but give a prior loss of ellipticity if and
only if d < �2ð�aa � 1Þ2=�aa.

Case (ii): d < 0. In this case qiso2 < qiso1 and the least eigenvalue corresponds to m ¼ n. If I4 < 1 and

F 00 > 0 then qfib1 < 0 and qfib1 < qfib2 , which admits the possibility of qfib2 < 0, so that (95) might vanish prior

to vanishing of (93). This is also associated with m ¼ n ¼ âa and has the same interpretation. Similarly, if

F 00 < 0, in which case qfib2 < qfib1 < 0.

If I4 > 1 then there is no loss of ellipticity if F 00 > 0, as in Case (i), but if F 00 < 0 then (95) may again

vanish with the same interpretation as in Case (i).

At this point we emphasize that the examples of failure of ellipticity discussed in the above two cases do
not necessarily correspond to a point at which ellipticity is first lost on a path of deformation from the

reference configuration. Depending on the material model and the path of deformation, weak surfaces may

be generated at an earlier point for which n is neither parallel to nor perpendicular to the deformed fiber

direction a. This can be appreciated by noting that after a little rearrangement detQ, as given by (72), may

be expressed in the form
detQ ¼ ðqiso1 þ qfib1 Þðqiso2 þ qfib2 Þ þ ðqiso2 � qiso1 Þðqfib2 � qfib1 Þðn� âaÞ2: ð97Þ
Cases (i) and (ii) above correspond to detQ ¼ 0 with n ¼ âa and either qiso1 þ qfib1 ¼ 0 or qiso2 þ qfib2 ¼ 0.

Clearly, detQ could in principle vanish either in fiber extension or contraction on a path of deformation

from the reference configuration with qiso1 þ qfib1 > 0 and qiso2 þ qfib2 > 0 if either d > 0 with F 00 < 0 or d < 0
with F 00 > 0 and n � a 6¼ 0, n� a 6¼ 0. In particular, it can vanish for small ðn � aÞ2, as illustrated in Section

3.1.2, Case (b). This corresponds to a weak surface close to parallel to the fiber direction (interpreted as

fiber de-bonding in extension and fiber splitting in contraction).

For appropriate choices of material model and deformations prediction of a weak surface at (or close to)

an angle of p=4 to the fiber direction is possible, but we do not pursue the details of this here. In com-

pression such failure of ellipticity could be associated with the initiation of a shear band.
3.2. Coupled reinforcement

An alternative possible reinforcing model, which is the counterpart of that used in the incompressible
theory (Merodio and Ogden, 2002), is given by
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bWW ðI1; I3; I4Þ ¼ WisoðI1; I3Þ þ WfibðI5Þ; ð98Þ
where I5 ¼ ðI1 � 1ÞI4 � I3. Thus, while in (63) ðI1; I3Þ and I4 are decoupled, in (98) there is a coupling of

ðI1; I3Þ and I4 through I5. In Merodio and Ogden (2002) the notation GðI5Þ ¼ WfibðI5Þ was used. For the
present purposes we illustrate the typical characteristics that arise by using a modified form of I5, denoted I
5
and defined by
I
5 ¼ ðI1 � 1ÞI4 � 1; ð99Þ
which couples I4 with I1 rather than with both I1 and I3. The algebra is much more involved if I5 is used

instead, but does not affect significantly the qualitative nature of the results, except that in extension loss of
ellipticity can occur even if GðI5Þ is convex. We therefore replace (98) by
bWW ðI1; I3; I4Þ ¼ WisoðI1; I3Þ þ WfibðI
5 Þ ð100Þ
and we use the notations
EðI1; I3Þ ¼ WisoðI1; I3Þ; GðI
5 Þ ¼ WfibðI
5 Þ: ð101Þ
From (48) it can be shown that the contribution of the term G to the normal stress in the deformed fiber

direction is 2J�1I4½âa � ðBâaÞ þ I1 � 1�G0, in which the coefficient of G0 is positive. It is therefore appropriate to
follow the pattern adopted in Section 2.4 and assume that G0 satisfies (39) and (40).

On substitution of (98) into (53) we obtain
ðQisomÞ �mþ ðQfibmÞ �m > 0; ð102Þ
where Qiso is as defined in Section 3.1.2 but Qfib is now derived from G, such that
ðQfibmÞ �m ¼ 2G00½I4m � ðBnÞ þ ðI1 � 1Þðn � aÞðm � aÞ�2 þ G0 I4n � ðBnÞ
h

þ ðI1 � 1Þðn � aÞ2
i

ð103Þ
from which it is clear that the coefficient of G0 is strictly positive and that of G00 non-negative.

We first note the special case of (103) for which n � a ¼ 0. In contrast to the corresponding situation for F
the terms in G in (103) do not vanish and reduce to
2G00½I4m � ðBnÞ�2 þ G0I4n � ðBnÞ: ð104Þ
In Section 3.1 it was noted that F does not admit a weak surface aligned with fiber direction. This is not the

case for G. Recall from (39) that G0ðI
5 Þ < 0 for I
5 < 1. If, for example, we take m ¼ âa and let n coincide with

the principal axis of B corresponding to the stretch k1 then the left-hand side of (102) simplifies to

ðE1 þ G0I4Þk2
1. Since E1 > 0 and G0ð1Þ ¼ 0 this expression is positive in the undeformed configuration but

can vanish as I
5 decreases from unity, at which point ellipticity is lost and the associated weak surface is

aligned with the fiber direction. As in Merodio and Ogden (2002) we identify this failure of ellipticity with

fiber splitting (Lee et al., 2000). If I
5 < 1 we have I4 < 2=ðk2
1 þ k2

2Þ. If, also, k2
1 þ k2

2 P 2 (or I3 P 1), which is
the case for an isochoric deformation, then I4 < 1 and the fiber is under contraction, but this is not so in

general when I
5 < 1, in contrast to the situation for an incompressible material. Similarly, if I4 > 1 and

I3 P 1 then I
5 > 1 follows.

If we now consider n ¼ âa and interchange the roles of m and n in the above paragraph (with n still

corresponding to stretch k1) then the left-hand side of (102) becomes E1k
2
1 þ G0I4ð2k2

1 þ k2
2Þ. In this case

ellipticity can fail as I
5 decreases at a value closer to unity than for the above example. This corresponds to

a weak surface normal to the fiber direction. If the fiber is under contraction this failure of ellipticity can

correspond to fiber kinking, as for the F ðI4Þ reinforcement.
Weak surfaces both aligned with and normal to the fiber direction may arise at the same deformation in

special situations and hence fiber splitting and fiber kinking may occur simultaneously (Lee et al., 2000).
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If the degree of anisotropy is sufficiently strong then the terms in G dominate the left-hand side of (102)

and hence loss of ellipticity cannot be avoided under contraction if I
5 < 1 is sufficiently small.

We now turn our attention to I
5 > 1 so that G0 > 0. It follows from (103) that a necessary condition for

loss of ellipticity (if the base material is strongly elliptic) is G00ðI
5 Þ < 0. In this case the weak surface may be
either (a) parallel to the fiber direction (n � a ¼ 0) or (b) normal to the fiber direction (n ¼ âa). For (a) the

appropriate failure mechanism is de-bonding, while in (b) it is matrix failure.

It can be shown, similarly to the situation described in Section 3.1.3, that if G00 P 0 then G ¼ ag satisfies a

nesting property with respect to the anisotropy parameter a. We also remark that if the isotropic base

material loses ellipticity then overall ellipticity can fail either for n � a ¼ 0 or n ¼ âa. With reference to (103),

it can be seen that this can occur for G0ðI
5 Þ and G00ðI
5 Þ with appropriate signs.
3.2.1. A specific material model

On the same basis as the discussion in Section 3.1.4 we consider an isotropic base material as given in
(82) but with F ðI4Þ replaced by GðI
5 Þ. We again denote by ðqfib1 ; qfib2 Þ the eigenvalues of the acoustic tensor
Qfib associated with the reinforcing model. Then it can be shown that the eigenvalues are given by
qfib1 ¼ n � mG0; qfib2 ¼ qfib1 þ 2m2G00; ð105Þ
where
m ¼ j m j; m ¼ I4Bnþ ðI1 � 1Þðn � aÞa ð106Þ
and we note that n � m > 0 for all n 6¼ 0. The associated eigenvectors satisfy, respectively, m � m ¼ 0 and

m� m ¼ 0.

Analogously to (97) we calculate
detQ ¼ ðqiso1 þ qfib1 Þðqiso2 þ qfib2 Þ þ ðqiso2 � qiso1 Þðqfib2 � qfib1 Þðn� m̂mÞ2; ð107Þ
where m̂m ¼ m=m. The combinations ðqiso1 ; qfib2 Þ and ðqiso2 ; qfib1 Þ are not admissible since they both entail m ¼ 0,

which is a contradiction. The combinations ðqiso1 ; qfib1 Þ and ðqiso2 ; qfib2 Þ each lead to m ¼ mn, and we then have
qiso1 þ qfib1 ¼ b1n21 þ b2n22 þ mG0; ð108Þ
qiso2 þ qfib2 ¼ d þ b1n21 þ b2n22 þ mG0 þ 2m2G00: ð109Þ
Finally, we illustrate these results by using the same form for EðI1; I3Þ and the same deformation as was

used in Section 3.1.4 with I3 ¼ 1 and the standard model for G, written
GðI
5 Þ ¼ 1
2
aðI
5 � 1Þ2: ð110Þ
For the considered specialization we have I
5 ¼ k4.

The results are shown in Fig. 2, in which detQ ¼ 0 is plotted in the ðk2; n21Þ plane for the same values of

the material constants �aa and d as were used in Fig. 1. For �aa ¼ 5 the result is similar qualitatively to those

shown in Fig. 1, but in this case, as �aa increases, two separate branches emerge. For each of the two larger

values of �aa the possibility of loss of ellipticity on a weak surface parallel to the fibers is evident (corres-

ponding to n1 ¼ 0) in addition to that normal to the fiber direction (n1 ¼ 1). However, for the considered
model loss of ellipticity occurs first as k decreases from 1 on a weak surface normal to the fiber direction,

although as �aa increases the values of k become very close for the two modes of ellipticity loss.



Fig. 2. Plot of the value of n21 against k2 in compression corresponding to loss of ellipticity using the reinforcing model (110) and

dimensionless material parameters d ¼ 40 and �aa ¼ 5, 10, 20.
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4. Discussion and summary

This analysis has been motivated by instability phenomena in fiber-reinforced composite materials and has

focused on failure prediction on the basis of loss of ellipticity of the considered elastic material. The materials

considered are isotropic base materials augmented by a function that accounts for the existence of fiber re-

inforcement (the reinforcing model). A detailed analysis of the ellipticity status of the I4 reinforcing model has

been given. In particular, in Section 3.1 simple conditions that guarantee the ellipticity of the I4 reinforcing
model have been derived. As in the case of an incompressible material (Merodio and Ogden, 2002) it was

found that loss of ellipticity (and hence fiber failure) is to be expected under fiber contraction. Failure may

also occur under fiber extension if the reinforcing model is non-convex. In Section 3.2, an alternative rein-

forcing model has been considered briefly and its effect on the loss of ellipticity has been illustrated in some

simple cases. We have indicated how the breakdown of ellipticity might be related to different fiber failure

mechanisms––kinking and splitting in compression and de-bonding or matrix failure in tension.

Other possible models can be considered and may extend the range of possible failure mechanisms. For

example, in compression, when the weak surface is neither close to alignment with nor normal to the fiber
direction (and, in particular, when it bisects these directions) then it may be considered as associated with

initiation of a shear band. Note, however, that elasticity theory per se cannot predict shear band thickness.

The analysis of shear band development requires an inelastic theory involving a length scale. A similar

comment applies to kink bands. We have examined only instabilities associated with loss of ellipticity in a

homogeneous material homogeneously deformed, so that boundary conditions are not involved. We have

not considered other types of instability such as buckling, which, under appropriate boundary conditions,

may be initiated prior to loss of ellipticity.
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